

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

2640

Mechanics 4

Thursday

22 MAY 2003

Afternoon

1 hour 20 minutes

Additional materials: Answer booklet Graph paper List of Formulae (MF8)

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use 9.8 m s⁻².
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

This question paper consists of 4 printed pages.

- A propeller shaft has constant angular acceleration. It turns through 160 radians as its angular speed increases from 15 rad s⁻¹ to 25 rad s⁻¹. Find
 - (i) the angular acceleration of the propeller shaft, [2]
 - (ii) the time taken for this increase in angular speed. [2]

2

The diagram shows a uniform lamina ABCDEF in which all the corners are right angles. The mass of the lamina is 3m.

- (i) Show that the moment of inertia of the lamina about AB is $3ma^2$. [3]
- (ii) Find the moment of inertia of the lamina about an axis perpendicular to the lamina and passing through A. [2]
- A uniform rod, of mass 0.75 kg and length 1.6 m, rotates in a vertical plane about a fixed horizontal axis through one end. A frictional couple of constant moment opposes the motion. The rod is released from rest in a horizontal position and, when the rod is first vertical, its angular speed is 3 rad s⁻¹.
 - (i) Find the magnitude of the frictional couple.

[4]

A disc is rotating about the same axis. The moment of inertia of the disc about the axis is $0.56 \,\mathrm{kg}\,\mathrm{m}^2$. When the rod is vertical, the disc has angular speed $4.2 \,\mathrm{rad}\,\mathrm{s}^{-1}$ in the opposite direction to that of the rod (see diagram). At this instant the rod hits a magnetic catch C on the disc and becomes attached to the disc.

(ii) Find the angular speed of the rod and disc immediately after they have become attached. [3]

4 A cruise ship C is sailing due north at a constant speed of 12 m s^{-1} . A boat B, initially 2000 m due west of C, sails with constant speed 11 m s^{-1} on a straight line course which takes it as close as possible to C.

(i) Find the bearing of the direction in which B sails.

[4]

(ii) Find the shortest distance between B and C in the subsequent motion.

[4]

5 The region bounded by the x-axis, the line x = 8 and the curve $y = x^{\frac{1}{3}}$ for $0 \le x \le 8$, is rotated through 2π radians about the x-axis to form a uniform solid of revolution. The unit of length is the metre, and the density of the solid is 350 kg m^{-3} .

(i) Show that the mass of the solid is 6720π kg.

[3]

(ii) Find the x-coordinate of the centre of mass of the solid.

[3]

(iii) Find the moment of inertia of the solid about the x-axis.

[4]

6

A wheel consists of a uniform circular disc, with centre O, mass $0.08 \, \text{kg}$ and radius $0.35 \, \text{m}$, with a particle P of mass $0.24 \, \text{kg}$ attached to a point on the circumference. The wheel is rotating without resistance in a vertical plane about a fixed horizontal axis through O (see diagram).

(i) Find the moment of inertia of the wheel about the axis.

[3]

(ii) Find the distance of the centre of mass of the wheel from the axis.

[2]

At an instant when OP is horizontal and the angular speed of the wheel is 5 rad s⁻¹, find

(iii) the angular acceleration of the wheel,

[2]

(iv) the magnitude of the force acting on the wheel at O.

[6]

[Question 7 is printed overleaf.]

A uniform rod AB, of mass m and length 2a, is pivoted to a fixed point at A and is free to rotate in a vertical plane. Two fixed vertical wires in this plane are a distance 6a apart and the point A is half-way between the two wires. Light smooth rings R_1 and R_2 slide on the wires and are connected to B by light elastic strings, each of natural length a and modulus of elasticity $\frac{1}{4}mg$. The strings BR_1 and BR_2 are always horizontal and the angle between AB and the upward vertical is θ , where $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$ (see diagram).

(i) Taking A as the reference level for gravitational potential energy, show that the total potential energy of the system is

$$mga(1+\cos\theta+\sin^2\theta). [5]$$

(ii) Given that $\theta = 0$ is a position of stable equilibrium, find the approximate period of small oscillations about this position. [8]

1 (i)	$25^2 = 15^2 + 2\alpha \times 160$	M1	Use of appropriate formula
	$\alpha = 1.25 \text{rad s}^{-2}$	A1 2	
(ii)	$160 = \frac{1}{2}(15 + 25)t$	M1	Or $25 = 15 + 1.25t$ etc
	t = 8 s	A1 2	
2 (i)	$I_{AB} = \frac{4}{3}(2m)a^2 + \frac{4}{3}(m)(\frac{1}{2}a)^2$	B1B1	
	$=\frac{8}{3}ma^2+\frac{1}{3}ma^2$		
	$=3ma^2$	B1 (ag) 3	
	OR $\frac{4}{3}(2m)(\frac{1}{2}a)^2 + \left\{\frac{1}{3}m(\frac{1}{2}a)^2 + m(\frac{3}{2}a)^2\right\}$ B1B1		
	$= \frac{2}{3}ma^2 + \frac{7}{3}ma^2 = 3ma^2$ B1		
	OR $\frac{4}{3}(4m)a^2 - \left\{\frac{1}{3}m(\frac{1}{2}a)^2 + m(\frac{3}{2}a)^2\right\}$ B1B1		
	$= \frac{16}{3}ma^2 - \frac{7}{3}ma^2 = 3ma^2$ B1		
(ii)	$I = I_{AB} + I_{AF}$	M1	Use of perpendicular axes rule
	$=6ma^2$	A1 2	
3 (i)	$I = \frac{4}{3} \times 0.75 \times 0.8^2$ (= 0.64)	B1	Equation involving WD VE DE
	$-C(\frac{1}{2}\pi) = \frac{1}{2}I \times 3^2 - 0.75 \times 9.8 \times 0.8$	M1 A1	Equation involving WD, KE, PE
	C = 1.91 N m	A1 4	Accept $\frac{6}{\pi}$
(ii)		M1	Conservation of angular momentum
	$(0.64 + 0.56)\omega = 0.56 \times 4.2 - 0.64 \times 3$	A1 ft	
	$\omega = 0.36 \mathrm{rad s}^{-1}$	A1 3	
4 (i)	2		
		M1	Relative velocity perpendicular to \mathbf{v}_B
	Vc VB	A1	Correct velocity triangle
	$\cos \theta = \frac{11}{100}$	M1	
	θ	A1	
	1/	4	
	V		
(ii)	As viewed from B	M1	Use of relative velocity
	d,'	A1 ft	Correct diagram with shortest distance
	3 2000 m		indicated
	$d = 2000 \sin 23.6$	M1	
	= 799 m	A1	Accept 799 to 801
		4	

- 4		1	1
5 (i)	$V = \int_0^8 \pi (x^{\frac{1}{3}})^2 \mathrm{d}x$	M1	
	$=\pi\left[\frac{3}{5}x^{\frac{5}{3}}\right]_0^8$	A1	For $\frac{3}{5}x^{\frac{5}{3}}$
	$=\frac{96}{5}\pi$		
	Mass is $350 \times \frac{96}{5} \pi = 6720 \pi \text{ kg}$	A1 (ag) 3	
(ii)	$\int xy^2 dx = \int_0^8 x (x^{\frac{1}{3}})^2 dx$	M1	
	$= \left[\frac{3}{8}x^{\frac{8}{3}}\right]_0^8 = 96$		
	$\bar{x} = \frac{\int xy^2 dx}{\int y^2 dx} = \frac{96}{\frac{96}{5}}$	M1	
	= 5	A1 3	
(iii)	$I = \int \frac{1}{2} (\rho \pi y^2) y^2 \mathrm{d}x$	M1	Integration of y ⁴
	$= \frac{1}{2} \times 350\pi \int_0^8 \left(x^{\frac{1}{3}}\right)^4 dx$	A1	
	$=175\pi \left[\frac{3}{7}x^{\frac{7}{3}}\right]_0^8$	A1	For $\frac{3}{7}x^{\frac{7}{3}}$
	$=9600\pi$ (= 30 200) kg m ²	A1 4	
6 (i)	$I = \frac{1}{2} \times 0.08 \times 0.35^2 + 0.24 \times 0.35^2$	B1B1	
	$= 0.0343 \text{ kg m}^2$	B1 3	
(ii)	$(0.08 + 0.24)\overline{x} = 0 + 0.24 \times 0.35$	M1	
	$\bar{x} = 0.2625 \text{ m}$	A1 2	
(iii)	$0.24 \times 9.8 \times 0.35 = I\alpha$	M1	Or $0.32 \times 9.8 \times 0.2625 = I\alpha$
	$\alpha = 24 \text{ rad s}^{-2}$	A1	Accept 2.45g
	2.183	2	
(iv)	$H = mr\omega^2$	M1	
	$= 0.32 \times 0.2625 \times 5^2 (= 2.1)$	A1 ft	
	$mg - V = mr\alpha$	M1	
	$V = 0.32 \times 9.8 - 0.32 \times 0.2625 \times 24 (=1.12)$	A1 ft	
	Magnitude $\sqrt{H^2 + V^2} = 2.38 \text{ N}$	M1A1 6	
	I		i .

7 (i)	GPE is $mga\cos\theta$	B1	
	EPE in BR_1 is $\frac{1}{2} \frac{\frac{1}{4} mg}{a} (3a + 2a \sin \theta - a)^2$	M1A1	
	$= \frac{1}{2} mga(1 + \sin \theta)^2$		
	EPE in BR_2 is $\frac{1}{2} \frac{\frac{1}{4} mg}{a} (3a - 2a \sin \theta - a)^2$	A1	
	$= \frac{1}{2} mga(1 - \sin \theta)^2$		
	$EPE = \frac{1}{2} mga(1 + 2\sin\theta + \sin^2\theta + 1 - 2\sin\theta + \sin^2\theta)$		
	$= mga(1 + \sin^2 \theta)$		
	Total PE, $V = mga(1 + \cos\theta + \sin^2\theta)$	A1 (ag) 5	
(ii)	KE is $\frac{1}{2}(\frac{4}{3}ma^2)\dot{\theta}^2$	M1A1	
	$\frac{2}{3}ma^2\dot{\theta}^2 + mga(1+\cos\theta+\sin^2\theta) = K$	M1	Differentiating energy equation
	$\frac{4}{3}ma^2\dot{\theta}\ddot{\theta} + mga(-\sin\theta + 2\sin\theta\cos\theta)\dot{\theta} = 0$	A1 ft	Differentiating energy equation
	$\ddot{\theta} + \frac{3g}{4a}\sin\theta(2\cos\theta - 1) = 0$		
	OR $T_1 = \frac{\frac{1}{4}mg}{a}(2a + 2a\sin\theta)$		
	$T_2 = \frac{\frac{1}{4}mg}{a}(2a - 2a\sin\theta) $ M1A1		
	$(T_2 - T_1)(2a\cos\theta) + mga\sin\theta = I\ddot{\theta} $ M1		
	$(-mg\sin\theta)(2a\cos\theta) + mga\sin\theta = (\frac{4}{3}ma^2)\ddot{\theta}$ A1 ft		
	$\ddot{\theta} + \frac{3g}{4a}\sin\theta(2\cos\theta - 1) = 0$		
	For small θ , $\sin \theta \approx \theta$, $\cos \theta \approx 1$	M1	
	$\ddot{\theta} + \frac{3g}{4a}\theta \approx 0$	A1 ft	
	Approx SHM with period $2\pi \sqrt{\frac{4a}{3g}}$ $(=4\pi \sqrt{\frac{a}{3g}})$	M1A1	
	OR KE is $\frac{1}{2}(\frac{4}{3}ma^2)\dot{\theta}^2$ M1A1		
	$V'(\theta) = mga(-\sin\theta + 2\sin\theta\cos\theta)$		
	$V''(\theta) = mga(-\cos\theta + 2\cos^2\theta - 2\sin^2\theta) \text{ M2A1}$		M2 for finding $V''(\theta)$
	V''(0) = mga A1		
	Period is $2\pi \sqrt{\frac{2 \text{ K}(0)}{\text{V}''(0)}} = 2\pi \sqrt{\frac{\frac{4}{3} ma^2}{mga}}$ M1		Dependent on M2 above
	$=2\pi\sqrt{\frac{4a}{3g}}$ A1		